首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   8篇
  2023年   1篇
  2016年   5篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   7篇
  2011年   9篇
  2010年   6篇
  2009年   4篇
  2008年   11篇
  2007年   14篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   3篇
  1999年   7篇
  1998年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   10篇
  1984年   2篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
61.
Recent evidence supports a role of microRNAs in cancer and psychiatric disorders such as schizophrenia and bipolar disorder, through their regulatory role on the expression of multiple genes. The rather rare co-morbidity of cancer and schizophrenia is an old hypothesis which needs further research on microRNAs as molecules that might exert their oncosuppressive or oncogenic activity in the context of their role in psychiatric disorders. The expression pattern of a variety of different microRNAs was investigated in patients (N = 6) suffering from schizophrenia termed control, patients with a solid tumor (N = 10) and patients with both schizophrenia and tumor (N = 8). miRNA profiling was performed on whole blood samples using the miRCURY LNA microRNA Array technology (6th & 7th generation). A subset of 3 microRNAs showed a statistically significant differential expression between the control and the study groups. Specifically, significant down-regulation of the let-7p-5p, miR-98-5p and of miR-183-5p in the study groups (tumor alone and tumorand schizophrenia) was observed (p<0.05). The results of the present study showed that let-7, miR-98 and miR-183 may play an important oncosuppressive role through their regulatory impact in gene expression irrespective of the presence of schizophrenia, although a larger sample size is required to validate these results. Nevertheless, further studies are warranted in order to highlight a possible role of these and other micro-RNAs in the molecular pathways of schizophrenia.  相似文献   
62.
Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system''s fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.  相似文献   
63.

Background  

Kallikrein-related peptidase 5 (KLK5) is a secreted trypsin-like protease of the KLK family, encoded by the KLK5 gene. KLK5 has been found to cleave various extracellular matrix components, as well as to activate several other KLK proteases, triggering the stimulation of tissue microenvironment proteolytic cascades.  相似文献   
64.
Using a shore-based station we monitored the position of sperm whales (Physeter macrocephalus) within the Kaikoura submarine canyon from 2010 to 2012. We tracked sperm whales using a theodolite station for a total of 290 days. We extracted the distance from the nearest coast, the depth and the bathymetric slope using ArcGIS 10.1. We estimated the seasonal spatial distribution of sperm whales using general additive models. The distribution varied significantly between seasons; individuals were found in deeper water and further offshore in the spring than in winter. This study improved our understanding of the variability of sperm whale distribution patterns off Kaikoura. We determined that the distribution was linked to the bathymetric features and we hypothesized that whales adapted their use of the submarine canyon in relation to food aggregation. We would encourage further studies to evaluate the sperm whale relationship with oceanographic variables off Kaikoura.  相似文献   
65.
ABSTRACT:?

This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (kLa), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, kLa.  相似文献   
66.
In eukaryotes, the ubiquitin–proteasome machinery regulates a number of fundamental cellular processes through accurate and tightly controlled protein degradation pathways. We have, herein, examined the effects of proteasome functional disruption in Dmp53 +/+ (wild-type) and Dmp53 ?/? Drosophila melanogaster fly strains through utilization of Bortezomib, a proteasome-specific inhibitor. We report that proteasome inhibition drastically shortens fly life-span and impairs climbing performance, while it also causes larval lethality and activates developmentally irregular cell death programs during oogenesis. Interestingly, Dmp53 gene seems to play a role in fly longevity and climbing ability. Moreover, Bortezomib proved to induce endoplasmic reticulum (ER) stress that was able to result in the engagement of unfolded protein response (UPR) signaling pathway, as respectively indicated by fly Xbp1 activation and Ref(2)P-containing protein aggregate formation. Larva salivary gland and adult brain both underwent strong ER stress in response to Bortezomib, thus underscoring the detrimental role of proteasome inhibition in larval development and brain function. We also propose that the observed upregulation of autophagy operates as a protective mechanism to “counterbalance” Bortezomib-induced systemic toxicity, which is tightly associated, besides ER stress, with activation of apoptosis, mainly mediated by functional Drice caspase and deregulated dAkt kinase. The reduced life-span of exposed to Bortezomib flies overexpressing Atg1_RNAi or Atg18_RNAi supports the protective nature of autophagy against proteasome inhibition-induced stress. Our data reveal the in vivo significance of proteasome functional integrity as a major defensive system against cellular toxicity likely occurring during critical biological processes and morphogenetic courses.  相似文献   
67.
In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay--a well known technique widely used for detecting fragmented DNA in various types of cells--was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells constituting an egg chamber (follicle cells, nurse cells and the oocyte) and in all stages of the early and mid-oogenesis, from germarium to stage 10, during which programmed cell death does not physiologically occur. Germarium and stages 7-8 were found to be the most sensitive developmental stages also in response to electromagnetic stress induced by the GSM and DCS fields and, moreover, germarium was found to be even more sensitive than stages 7-8.  相似文献   
68.
69.
Synthesis and selective accumulation of the major yolk proteins in the developing oocytes of the species Dacus oleae (Diptera: Tephritidae) was studied biochemically and by immunoelectron microscopy. In the hemolymph of adult females, two yolk proteins precursors (or vitellogenins) have been detected. They each exhibit a similar molecular weight and isoelectric point to their respective mature yolk proteins (or vitellins), while electrophoretic analysis of their synthetic profile shows that their levels in the hemolymph increase rapidly during development. Immunogold electron microscopy of ovarian sections, revealed that the hemolymph vitellogenins reach the oocyte through enlarged inter-follicular spaces and demonstrated vitellogenin synthesis by the follicle cells of the vitellogenic follicles. The newly synthesized vitellogenins follow a distinct secretory pathway into these cells as compared to other components being synthesized at the same time (e.g. the vitelline envelope proteins), since they were found in secretory vesicles that appeared to be differentiated from those destined to participate in the vitelline envelope. The vitellogenin-containing vesicles exocytose their contents directionally into the follicle cell/vitelline envelope boundary, and subsequently the vitellogenins diffuse among the gaps of the forming vitelline envelope and reach the oocyte plasma membrane. Their internalization by the oocyte includes the formation of an endocytic complex consisting of coated pits, coated vesicles, endosomes, transitional yolk bodies, and finally mature yolk bodies, in which the storage of the vitellins and other yolk proteins occur. These results are discussed in relation to data obtained from other Dipteran species.  相似文献   
70.
An airlift draft-tube fluidized bioreactor has been designed and tested for applications in protein bioseparation. Operating parameters and geometrical dimensions of the bioreactor were optimized to ensure fluid circulation in a defined cyclic pattern between the riser and the downcomer. The overall directionality of liquid flow generates homogeneous field of low shear and achieves good mixing efficiency. Bioseparation of proteins was achieved from solutions containing both BSA and BHb at different initial concentrations and at pH 7. Similar adsorption capacities of both proteins were observed in single protein adsorption experiments at pH 7. Compressibility of BHb allowed for high adsorption capacity, in addition to the hydrophobic interaction forces. Apparently the homogeneous and lower shear generated by the airlift bioreactor reduces the compressibility of adsorbed BHb. This allowed for higher BSA adsorption from solutions containing BSA and BHb mixtures. Conventional batch adsorption experiments showed more adsorption of BHb, which reduces bioseparation efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号